Recently, much attention has been focused on utilization of natural gas (methane) as a feedstock for green chemistry. Methanol which is produced from methane is also a useful industrial raw material because it is low in cost and easy to transport. Together with fossil fuels and biomass, methane and methanol are major natural carbon resources we can utilize in the future. We are investigating how the microbes utilize these natural resources from the aspect of biochemistry, molecular biology, and intracellular dynamics. Based on the cellular functions of these microbes, we are conducting studies in new biotechnology for production of useful compounds.

We are looking for novel cellular functions of microbes which utilize natural carbon resources (fossil fuels, natural gas and biomass) and applying them to biotechnology.

We are aiming at elucidation of metabolic function and regulatory mechanism of gene expression in microbes which utilize methanol or a variety of alkanes. We have developed a high-level heterologous gene expression system in methanol-utilizing yeasts and have produced useful proteins successfully.

In methanol-utilizing yeasts, peroxisomes (P) are proliferated up to 80% of total cell volume (left). We could produce useful proteins within peroxisomes at a high level (right).

We have developed methods for visualization of the membrane dynamics and oxidative stress level within living yeast cells. Using these methods, we are aiming at elucidation of the molecular mechanism of protein sorting to peroxisomes and degradation of peroxisomes (pexophagy).
Keywords

Natural resources, natural gas, biomass, molecular circulation, molecular and cellular biology, heterologous gene expression, protein degradation, lipid and membrane dynamics, oxidative stress, redox, C1 microbes, methane, methanol

Recent Publications

Molecular characterization of the *Candida boidinii MIG1* and its role in regulation of methanol-inducible gene expression.
Zhai Z, Yurimoto H, and Sakai Y.
Yeast, in press (2012)

Distribution of methanotrophs in the phyllosphere.
Iguchi H, Sato I, Sakakibara M, Yurimoto H, and Sakai Y.

Distribution of pink-pigmented facultative methylotrophs on leaves of vegetables.
Mizuno M, Yurimoto H, Yoshida N, Iguchi H, and Sakai Y.

Msn5p is involved in formaldehyde resistance but not in oxidative stress response in the methylotrophic yeast *Candida boidinii*.
Zhai Z, Yurimoto H, and Sakai Y.

Assessment of physiological redox state with FRET protein probes.
Oku M and Sakai Y.
Antioxid Redox Signal, 16: 698-704 (2012)

Stimulation of methanotrophic growth in co-cultures by cobalamin excreted by rhizobia.
Iguchi H, Yurimoto H, and Sakai Y.

Yeast methylotrrophy and autophagy in a methanol-oscillating environment on growing *Arabidopsis thaliana* leaves.
Kawaguchi K, Yurimoto H, Oku M, and Sakai Y.
PLoS One, 6: e25257 (2011)

Yeast methylotrrophy: metabolism, gene regulation, and peroxisome homeostasis.
Yurimoto H, Oku M, and Sakai Y.

Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph from forest soil.
Iguchi H, Yurimoto H, and Sakai Y
Recent Publications

Atg8 regulates vacuolar membrane dynamics in a lipidation-independent manner in *Pichia pastoris*.
Tamura N, Oku M, and Sakai Y

Crystal structure of 3-hexulose-6-phosphate synthase, a member of the orotidine 5'-monophosphate decarboxylase suprafamily.

Soluble and particulate methane monooxygenase gene clusters in the type I methanotroph *Methylovulum miyakonense HT12*.
Iguchi H, Yurimoto H, and Sakai Y

Overexpression of an HPS/PHI fusion enzyme from *Mycobacterium gastri* in chloroplasts of geranium enhances its ability to assimilate and phytoremediate formaldehyde.

Peroxisomes as dynamic organelles: autophagic degradation.
Oku M and Sakai Y

A novel fluorescent sensor protein for visualization of redox states in the cytoplasm and in peroxisomes.

Trm2p-dependent derepression is essential for methanol-specific gene activation in the methylotrophic yeast *Candida boidinii*.
Sasano Y, Yurimoto H, Kuriyama M, and Sakai Y

Assimilation of formaldehyde in transgenic plants due to the introduction of the bacterial ribulose monophosphate pathway genes

Autophagy in plants and phytopathogens
Yoshimoto K, Takano Y, and Sakai Y

Genomic organization and biochemistry of the ribulose monophosphate pathway and its application in biotechnology
Yurimoto H, Kato N, and Sakaï Y
Recent Publications

Atg26-mediated pexophagy and fungal phytopathogenicity
Takano Y, Asakura M, and Sakai Y
Autophagy, 5: 1041-1042 (2009)

Lag-phase autophagy in the methylotrophic yeast *Pichia pastoris*
Yamashita S, Yurimoto H, Murakami D, Yoshikawa M, Oku M, and Sakai Y
Genes Cells, 14: 861-870 (2009)

Activation of the oxidative stress regulator PpYap1 through conserved cysteine residues during methanol metabolism in the yeast *Pichia pastoris*
Yano T, Yurimoto H, and Sakai Y

Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus *Colletotrichum orbiculare*
Asakura M, Ninomiya S, Sugimoto M, Oku M, Yamashita S, Okuno T, Sakai Y, and Takano Y

Methanol-inducible gene expression and heterologous protein production in the methylotrophic yeast *Candida boidinii*.
Yurimoto H and Sakai Y

The Yap-1 regulated glutathione redox system curtails the accumulation of formaldehyde and reactive oxygen species in methanol metabolism of *Pichia pastoris*
Yano T, Takigami E, Yurimoto H, and Sakai Y
Eukaryot Cell, 8: 540-549 (2009)

Molecular basis of methanol-inducible gene expression and its application in the methylotrophic yeast *Candida boidinii*
Yurimoto H

Overexpression and purification of rat peroxisomal membrane protein 22, PMP22, in *Pichia pastoris*
Protein Expr Purif, 64: 47-54 (2009)

Pexphagy in *Pichia pastoris*
Oku M and Sakai Y

Trm1p, a Zn(II)$_2$Cys$_6$-type transcription factor, is a master regulator of methanol-specific gene activation in the methylotrophic yeast *Candida boidinii*
Sasano Y, Yurimoto H, Yanaka M, and Sakai Y

...